Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 39886 Accepted Submission(s): 14338
Problem Description
Now I think you have got an AC in Ignatius.L’s “Max Sum” problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S1,S2,S3,S4…Sx,…Sn(1≤x≤n≤1,000,000,−32768≤Sx≤32767). We define a function sum(i,j)=Si+…+Sj(1≤i≤j≤n).
Now given an integer m(m>0), your task is to find m pairs of i and j which make sum(i1,j1)+sum(i2,j2)+sum(i3,j3)+…+sum(im,jm) maximal (ix≤iy≤jx or ix≤jy≤jx is not allowed).
But I`m lazy, I don’t want to write a special-judge module, so you don’t have to output m pairs of i and j, just output the maximal summation of sum(ix,jx)(1≤x≤m) instead.
Input
Each test case will begin with two integers m and n, followed by n integers S1,S2,S3…Sn.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 | 1 3 1 2 3 |
Sample Output
1 | 6 |
题意
将一个长度为n的数组分成不相交的m段,求这m段的和的最大值
思路
状态:dp[i][j]表示在前j个数中取出i段的最大和
状态转移方程:dp[i][j]=max(dp[i−1][k],dp[i][j−1])+num[j](i−1≤k≤j−1)
由于m范围未知,n≤106,所以二维的dp方程无论是在时间上还是在空间上都是不允许的。
那么我们就需要对这个方程进行优化:
不难发现当前状态只与两个状态有关:
- 第j个数和前j−1个数在一段里
- 第j个数和前j−1个数不在一段里。
根据这一点,我们把状态降成一维的数组,dp[j]表示前j个数分i段时的最大和,然后用sum[j−1]来表示状态一的前j−1个数在前i−1段的最大和,dp[j−1]表示状态二的前j−1个数在前i段的最大和。
当前状态的转移方程为:dp[j]=max(dp[j−1],sum[j−1])+num[j],持续更新dp与sum数组的值
AC代码
1 |
|